Large area metalenses: design, characterization, and mass manufacturing.
نویسندگان
چکیده
Optical components, such as lenses, have traditionally been made in the bulk form by shaping glass or other transparent materials. Recent advances in metasurfaces provide a new basis for recasting optical components into thin, planar elements, having similar or better performance using arrays of subwavelength-spaced optical phase-shifters. The technology required to mass produce them dates back to the mid-1990s, when the feature sizes of semiconductor manufacturing became considerably denser than the wavelength of light, advancing in stride with Moore's law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make optical components, such as lenses, based on metasurfaces. Using a scalable metasurface layout compression algorithm that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we show the design and fabrication of metasurface lenses (metalenses) with extremely large areas, up to centimeters in diameter and beyond. Using a single two-centimeter diameter near-infrared metalens less than a micron thick fabricated in this way, we experimentally implement the ideal thin lens equation, while demonstrating high-quality imaging and diffraction-limited focusing.
منابع مشابه
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift
Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phon...
متن کاملUltra-thin, planar, Babinet-inverted plasmonic metalenses
We experimentally demonstrate the focusing of visible light with ultra-thin, planar metasurfaces made of concentrically perforated, 30-nm-thick gold films. The perforated nano-voids—Babinet-inverted (complementary) nano-antennas—create discrete phase shifts and form a desired wavefront of cross-polarized, scattered light. The signal-to-noise ratio in our complementary nano-antenna design is at ...
متن کاملStudy on implementation of one-piece lean line design using simulation techniques: A practical approach
This paper discusses the simulation study carried out for proposing one-piece lean line layout with features of Lean Manufacturing. The lean initiatives that can be addressed are, introducing Kanban replenishment sys-tem, better work-in-process, changing the layout, visual management techniques, standardized work for the re-duction of cycle time, number of workers, number of setups. To improve ...
متن کاملDesigning super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers
We recently demonstrated a phase compensated metalens that cannot only achieve super-resolution, but also possesses the Fourier transform capability. The metalens consists of a metamaterial slab and a plasmonic waveguide coupler (PWC). We have now ascertained the requirements for the metamaterial and the detailed design principles for the PWCs. Simulations of metalenses with a new type of PWC g...
متن کاملExtraordinary light focusing and Fourier transform properties of gradient-index metalenses
We propose and demonstrate a new type of metalenses that are phase compensated by gradient index (GRIN) or inhomogeneous permittivity metamaterials. Both elliptically and hyperbolically dispersive GRIN metalenses for both internal and external focusing are studied. The requirements for the GRIN metalenses and the light focusing characteristics are analyzed and numerically verified. The GRIN met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2018